Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.552
Filtrar
1.
Front Immunol ; 15: 1358886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660303

RESUMO

Background: Bickerstaff brainstem encephalitis (BBE) is a rare disease considered caused by acute demyelination of the brainstem, most often resulting from secondary autoimmune responses. To our knowledge, this is the first probable case report of shingles-associated BBE with anti-sulfatide IgM positivity. Case presentation: We report the case of an 83-year-old woman with symptoms of progressive limb weakness, difficulty swallowing food, and disturbed consciousness that occurred 4 weeks following herpes zoster infection. Autoimmune anti-sulfatide antibodies were positive and fluid-attenuated inversion recovery (FLAIR) sequences revealed clear high signal intensity in pons and bilateral thalamus. Our patient's condition improved markedly with glucocorticoid treatment. After 2 months of treatment, our patient was fully recovered. We considered that for her case, BBE is the most appropriate diagnosis. Conclusions: We emphasize the importance of a careful medical history and assessment of clinical symptoms, performing MRI, testing autoimmune antibodies for rapid diagnosis, and ruling out differential diagnoses. Further studies involving more patients with BBE with IgM anti-sulfatide autoantibodies will increase the understanding of the clinical characteristics and advance the diagnosis and treatment of this syndrome. Meanwhile, it is crucial for dermatologists to know about this severe neurological complication following shingles.


Assuntos
Autoanticorpos , Tronco Encefálico , Encefalite , Imunoglobulina M , Sulfoglicoesfingolipídeos , Humanos , Feminino , Tronco Encefálico/imunologia , Idoso de 80 Anos ou mais , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Autoanticorpos/imunologia , Autoanticorpos/sangue , Encefalite/diagnóstico , Encefalite/imunologia , Encefalite/tratamento farmacológico , Sulfoglicoesfingolipídeos/imunologia , Imageamento por Ressonância Magnética , Glucocorticoides/uso terapêutico
2.
Eur J Pharmacol ; 970: 176461, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460658

RESUMO

Our previous studies have showed that sulfatide-reactive type II NKT (i.e. variant NKT, vNKT) cells inhibit the immunogenic maturation during the development of mature lung dendritic cells (LDCs), leading todeclined allergic airway inflammation in asthma. Nonetheless, the specific immunoregulatory roles of vNKT cells in LDC-mediated Th2 cell responses remain incompletely understood. Herein, we found that administration of sulfatide facilitated the generation of CD4+FoxP3+ regulatory T (Treg) cells in the lungs of wild-type mice, but not in CD1d-/- and Jα18-/- mice, after ovalbumin or house dust mite exposure. This finding implies that the enhancement of lung Treg cells by sulfatide requires vNKT cells, which dependent on invariant NKT (iNKT) cells. Furthermore, the CD4+FoxP3+ Treg cells induced by sulfatide-reactive vNKT cells were found to be associated with PD-L1 molecules expressed on LDCs, and this association was dependent on iNKT cells. Collectively, our findings suggest that in asthma-mimicking murine models, sulfatide-reactive vNKT cells facilitate the generation of lung Treg cells through inducing tolerogenic properties in LDCs, and this process is dependent on the presence of lung iNKT cells. These results may provide a potential therapeutic approach to treat allergic asthma.


Assuntos
Asma , Linfócitos T Reguladores , Camundongos , Animais , Sulfoglicoesfingolipídeos/farmacologia , Sulfoglicoesfingolipídeos/metabolismo , Sulfoglicoesfingolipídeos/uso terapêutico , Camundongos Endogâmicos BALB C , Pulmão , Asma/tratamento farmacológico , Inflamação/metabolismo , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo , Modelos Animais de Doenças
3.
Diabetes Metab Res Rev ; 40(3): e3792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517704

RESUMO

AIMS: Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS: We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS: Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS: Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Esfingolipídeos , Resistência à Insulina/genética , Pericitos , Sulfoglicoesfingolipídeos , Insulina , Insulina Regular Humana , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon , Glucose
4.
BMJ Open ; 14(2): e076882, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341215

RESUMO

INTRODUCTION: Sphingolipids regulate proinsulin folding, insulin secretion and control beta cells apoptosis. Recent evidence has demonstrated that, among other factors, reduced amounts of sulfatide may be relevant in the development of type 1 diabetes (T1D). Thus, fenofibrate, which activates sulfatide biosynthesis, may prolong remission in subjects with T1D. The aim of the study is to evaluate clinical efficacy of fenofibrate on the maintenance of residual beta-cell function in children with newly diagnosed T1D. METHODS AND ANALYSIS: A total of 102 children aged 10-17 years with newly diagnosed T1D will be enrolled in a double-blind, two-centre randomised, non-commercial, placebo-controlled trial. Subjects who will meet all inclusion criteria will be randomly assigned to receive fenofibrate at a dose of 160 mg or an identically appearing placebo, orally, once daily, for 12 months. The primary endpoint will be the area under the curve of the C-peptide level during 2-hour responses to a mixed-meal tolerance test (MMTT). Secondary endpoints include fasting and maximum C-peptide concentration in the MMTT, parameters of diabetes control and glucose fluctuations, daily insulin requirement, inflammation markers, genetic analysis, safety and tolerance of the fenofibrate ETHICS AND DISSEMINATION: The study protocol was approved by the Bioethics Committee. The results of this study will be submitted to a peer-reviewed diabetic journal. Abstracts will be submitted to international and national conferences. TRIAL REGISTRATION NUMBER: EnduraCT 2020-003916-28.


Assuntos
Diabetes Mellitus Tipo 1 , Fenofibrato , Criança , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fenofibrato/uso terapêutico , Peptídeo C , Sulfoglicoesfingolipídeos/uso terapêutico , Insulina/uso terapêutico , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357925

RESUMO

NKT cells recognize glycolipids presented by CD1d-expressing antigen-presenting cells (APCs) and include type I NKT cells with antitumor function and type II NKT cells, which have been reported to suppress the antitumor response. Some type II NKT cells recognize sulfatide, a glycosphingolipid with a sulfate modification of the sugar. Type I NKT cells recognize different glycosphingolipids. In this issue of the JCI, Nishio and colleagues showed that APCs could process sulfatide antigens, analogous to protein processing for peptide-reactive T cells. Antigen processing in lysosomes removed sulfate to generate a glycosphingolipid that stimulated type I NKT cells and thereby turned an antigen with no antitumor activity into one that not only stimulated type I NKT cells but also stimulated antitumor responses. These findings may extend to the development of glycolipid antigens that could stimulate anticancer responses via antigen processing by APCs.


Assuntos
Células T Matadoras Naturais , Sulfoglicoesfingolipídeos/metabolismo , Antígenos CD1d , Glicolipídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Sulfatos/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255886

RESUMO

Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) can occasionally trigger thrombotic microangiopathy (TMA). Cytomegalovirus (CMV) may be reactivated during intensive immunosuppressive therapy for AAV and cause TMA. Therefore, we aimed to evaluate the clinical features of and the association between vascular endothelial injury markers and TMA due to CMV in patients with AAV. A 61-year-old female was diagnosed with AAV and severe kidney injury. Immunosuppressive therapy gradually improved her symptoms and laboratory findings. However, 2 weeks after induction therapy initiation, she exhibited altered consciousness, a significant decrease in platelet count, and hemolytic anemia, resulting in a TMA diagnosis. Plasma exchange did not improve TMA findings and routine screening test revealed CMV infection. Ganciclovir injection improved the infection and TMA findings. Consequently, we diagnosed her with CMV-induced TMA. Both AAV and CMV may induce severe vascular endothelial injury, potentially leading to TMA development. CMV-induced TMA should be considered when TMA develops during induction therapy against AAV. Moreover, of the three serum markers of vascular injury-serum sulfatides, soluble thrombomodulin, and pentraxin 3-serum sulfatides may be associated with the development of TMA, and a high level of soluble thrombomodulin may be associated with the development of CMV viremia during the clinical course of AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Infecções por Citomegalovirus , Microangiopatias Trombóticas , Lesões do Sistema Vascular , Humanos , Feminino , Pessoa de Meia-Idade , Anticorpos Anticitoplasma de Neutrófilos , Trombomodulina , Sulfoglicoesfingolipídeos , Infecções por Citomegalovirus/complicações , Citomegalovirus , Microangiopatias Trombóticas/diagnóstico , Microangiopatias Trombóticas/etiologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações
7.
Cell Chem Biol ; 31(2): 265-283.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972592

RESUMO

Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis. In return, sulfatide supplementation decreases Aß generation by reducing ß-secretase (BACE1) and γ-secretase processing of APP. Increased BACE1 lysosomal degradation leads to reduced BACE1 protein level in endosomes. Reduced γ-secretase activity is caused by a direct effect on γ-secretase activity and reduced amounts of γ-secretase components in lipid rafts. Similar changes were observed by analyzing cells and mice brain samples deficient of arylsulfatase A responsible for sulfatide degradation or knocked down in Gal3st1/CST. In line with these findings, addition of sulfatides to brain homogenates of AD patients resulted in reduced γ-secretase activity. Human brain APP level shows a significant negative correlation with GAL3ST1/CST expression underlining the in vivo relevance of sulfatide homeostasis in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Sulfoglicoesfingolipídeos , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos
8.
Int J Biol Macromol ; 258(Pt 1): 128780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104688

RESUMO

This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.


Assuntos
Leucodistrofia Metacromática , Sulfotransferases , Humanos , Leucodistrofia Metacromática/metabolismo , Sulfoglicoesfingolipídeos , Bainha de Mielina/metabolismo , Neurônios/metabolismo
9.
Ann Clin Transl Neurol ; 11(2): 328-341, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146590

RESUMO

OBJECTIVE: To evaluate the longitudinal correlations between sulfatide/lysosulfatide levels and central and peripheral nervous system function in children with metachromatic leukodystrophy (MLD) and to explore the impact of intravenous recombinant human arylsulfatase A (rhASA) treatment on myelin turnover. METHODS: A Phase 1/2 study of intravenous rhASA investigated cerebrospinal fluid (CSF) and sural nerve sulfatide levels, 88-item Gross Motor Function Measure (GMFM-88) total score, sensory and motor nerve conduction, brain N-acetylaspartate (NAA) levels, and sural nerve histology in 13 children with MLD. Myelinated and unmyelinated nerves from an untreated MLD mouse model were also analyzed. RESULTS: CSF sulfatide levels correlated with neither Z-scores for GMFM-88 nor brain NAA levels; however, CSF sulfatide levels correlated negatively with Z-scores of nerve conduction parameters, number of large (≥7 µm) myelinated fibers, and myelin/fiber diameter slope, and positively with nerve g-ratios and cortical latencies of somatosensory-evoked potentials. Quantity of endoneural litter positively correlated with sural nerve sulfatide/lysosulfatide levels. CSF sulfatide levels decreased with continuous high-dose treatment; this change correlated with improved nerve conduction. At 26 weeks after treatment, nerve g-ratio decreased by 2%, and inclusion bodies per Schwann cell unit increased by 55%. In mice, abnormal sulfatide storage was observed in non-myelinating Schwann cells in Remak bundles of sciatic nerves but not in unmyelinated urethral nerves. INTERPRETATION: Lower sulfatide levels in the CSF and peripheral nerves correlate with better peripheral nerve function in children with MLD; intravenous rhASA treatment may reduce CSF sulfatide levels and enhance sulfatide/lysosulfatide processing and remyelination in peripheral nerves.


Assuntos
Leucodistrofia Metacromática , Psicosina/análogos & derivados , Criança , Humanos , Camundongos , Animais , Leucodistrofia Metacromática/tratamento farmacológico , Sulfoglicoesfingolipídeos/farmacologia , Cerebrosídeo Sulfatase , Nervo Isquiático/patologia
10.
Front Immunol ; 14: 1271741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111574

RESUMO

Sulfatides are a type of sulfated glycosphingolipid that are secreted with lipoproteins into the serum. These molecules are involved in the inflammatory pathway of vessels in addition to coagulation and platelet aggregation. Previous studies have proposed that sulfatides play a pivotal role in regulating inflammation-related disorders. Systemic vasculitis (SV) diseases are generally caused by autoimmune diseases and often involve kidney vasculitis, which may lead to rapidly progressive kidney dysfunction and end-stage kidney disease. Our earlier pilot study revealed that the level of serum sulfatides (SSs) was significantly decreased in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV), a representative disease-causing SV with kidney involvement (SVKI), especially in patients exhibiting active crescentic findings on kidney biopsy. To further explore the clinical significance of an association between SS and SVKI, we analyzed and compared the SS level of patients with various SVKI diseases in this retrospective cohort study. Among patients admitted to our hospital between 2008 and 2021, we ultimately enrolled 26 patients with IgA vasculitis (IgAV), 62 patients with AAV, and 10 patients with anti-glomerular basement membrane disease (GBM) as examples of SVKI diseases, as well as 50 patients with IgA nephropathy (IgAN) and 23 donors for living kidney transplantation as controls. The mean ± standard deviation SS level in the donor, IgAN, IgAV, AAV, and GBM groups was 8.26 ± 1.72, 8.01 ± 2.21, 6.01 ± 1.73, 5.37 ± 1.97, and 2.73 ± 0.99 nmol/mL, respectively. Analysis of patients in the SVKI disease group showed that those with the crescentic class kidney biopsy finding exhibited a significantly lower SS level than did those with other class biopsy features. Additionally, the SS level had a higher detection ability for SVKI patients with crescentic class kidney biopsy findings (area under the receiver operating characteristic curve 0.90, 95% confidence interval 0.82-0.99) than did several other predictor candidates. Our results indicate that the SS level is decreased in more severe SVKI diseases and may be associated with active glomerular lesions in SVKI kidney biopsy samples.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glomerulonefrite por IGA , Glomerulonefrite , Humanos , Sulfoglicoesfingolipídeos , Estudos Retrospectivos , Projetos Piloto , Rim/patologia , Glomerulonefrite por IGA/patologia
11.
J Clin Invest ; 134(4)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127463

RESUMO

In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding ß-galactosylceramide (ßGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Sulfoglicoesfingolipídeos/metabolismo , Antígenos CD1d/genética , Apresentação de Antígeno , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sulfatos/metabolismo
12.
J Neuroimmune Pharmacol ; 18(4): 592-609, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37924373

RESUMO

Metachromatic leukodystrophy (MLD) is a severe demyelinating, autosomal recessive genetic leukodystrophy, with no curative treatment. The disease is underpinned by mutations in the arylsulfatase A gene (ARSA), resulting in deficient activity of this lysosomal enzyme, and consequential accumulation of galactosylceramide-3-O-sulfate (sulfatide) in the brain. Most of the effects in the brain have been attributed to the accumulation of sulfatides in oligodendrocytes and their cell damage. In contrast, less is known regarding sulfatide toxicity in astrocytes. Poly (ADP-ribose) polymerase (PARP) inhibitors are anti-cancer therapeutics that have proven efficacy in preclinical models of many neurodegenerative and inflammatory diseases, but have never been tested for MLD. Here, we examined the toxic effect of sulfatides on human astrocytes and restoration of this cell damage by the marketed PARP-1 inhibitor, Olaparib. Cultured human astrocytes were treated with increasing concentrations of sulfatides (5-100 µM) with or without Olaparib (100 nM). Cell viability assays were used to ascertain whether sulfatide-induced toxicity was rescued by Olaparib. Immunofluorescence, calcium (Ca2+) imaging, ROS, and mitochondrial damage assays were also used to explore the effects of sulfatides and Olaparib. ELISAs were performed and chemotaxis of peripheral blood immune cells was measured to examine the effects of Olaparib on sulfatide-induced inflammation in human astrocytes. Here, we established a concentration-dependent (EC50∼20 µM at 24 h) model of sulfatide-induced astrocyte toxicity. Our data demonstrate that sulfatide-induced astrocyte toxicity involves (i) PARP-1 activation, (ii) pro-inflammatory cytokine release, and (iii) enhanced chemoattraction of peripheral blood immune cells. Moreover, these sulfatide-induced effects were attenuated by Olaparib (IC50∼100 nM). In addition, sulfatide caused impairments of ROS production, mitochondrial stress, and Ca2+ signaling in human astrocytes, that were indicative of metabolic alterations and that were also alleviated by Olaparib (100 nM) treatment. Our data support the hypothesis that sulfatides can drive astrocyte cell death and demonstrate that Olaparib can dampen many facets of sulfatide-induced toxicity, including, mitochondrial stress, inflammatory responses, and communication between human astrocytes and peripheral blood immune cells. These data are suggestive of potential therapeutic utility of PARP inhibitors in the sphere of rare demyelinating diseases, and in particular MLD. Graphical abstract. Proposed mechanism of action of Olaparib in sulfatide-treated astrocytes. Human astrocytes treated for 24 h with sulfatides increase PARP-1 expression and die. PARP-1 overexpression is modulated by Ca2+ release from the endoplasmic reticulum, thus enhancing intracellular Ca2+ concentration. PARP-1 inhibition with Olaparib reduces Ca2+ influx and cell death. Olaparib also decreases IL-6, IL-8, IL-17, and CX3CL1 release from sulfatide-stimulated astrocytes, suggesting that PARP-1 plays a role in dampening neuroinflammation in MLD. This is confirmed by the reduction of immune cell migration such as lymphocytes, NK cells, and T cells towards sulfatide-treated astrocytes. Moreover, mitochondrial stress and ROS production induced by sulfatides are rescued by PARP-1 inhibition. Future studies will focus on the signaling cascades triggered by PARP-1-mediated currents in reactive astrocytes and Olaparib as a potential therapeutic target for MLD.


Assuntos
Leucodistrofia Metacromática , Sulfoglicoesfingolipídeos , Humanos , Astrócitos , Doenças Neuroinflamatórias , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Espécies Reativas de Oxigênio , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia
13.
PLoS One ; 18(9): e0291063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669305

RESUMO

Brown bears (Ursus arctos) prepare for winter by overeating and increasing adipose stores, before hibernating for up to six months without eating, drinking, and with minimal movement. In spring, the bears exit the den without any damage to organs or physiology. Recent clinical research has shown that specific lipids and lipid profiles are of special interest for diseases such as diabetes type 1 and 2. Furthermore, rodent experiments show that lipids such as sulfatide protects rodents against diabetes. As free-ranging bears experience fat accumulation and month-long physical inactivity without developing diabetes, they could possibly be affected by similar protective measures. In this study, we investigated whether lipid profiles of brown bears are related to protection against hibernation-induced damage. We sampled plasma from 10 free-ranging Scandinavian brown bears during winter hibernation and repeated sampling during active state in the summer period. With quantitative shotgun lipidomics and liquid chromatography-mass spectrometry, we profiled 314 lipid species from 26 lipid classes. A principal component analysis revealed that active and hibernation samples could be distinguished from each other based on their lipid profiles. Six lipid classes were significantly altered when comparing plasma from active state and hibernation: Hexosylceramide, phosphatidylglycerol, and lysophosphatidylglycerol were higher during hibernation, while phosphatidylcholine ether, phosphatidylethanolamine ether, and phosphatidylinositol were lower. Additionally, sulfatide species with shorter chain lengths were lower, while longer chain length sulfatides were higher during hibernation. Lipids that are altered in bears are described by others as relevant for and associated with diabetes, which strengthens their position as potential effectors during hibernation. From this analysis, a range of lipids are suggested as potential protectors of bear physiology, and of potential importance in diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ursidae , Animais , Sulfoglicoesfingolipídeos , Adiposidade , Éteres
14.
Nat Commun ; 14(1): 5703, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709739

RESUMO

Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.


Assuntos
Malária Vivax , Plasmodium , Humanos , Plasmodium vivax/genética , Triptofano , Antígenos de Protozoários/genética , Sulfoglicoesfingolipídeos
15.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629117

RESUMO

Anti-glycolipid antibodies have been reported to play pathogenic roles in peripheral inflammatory neuropathies, such as Guillain-Barré syndrome. On the other hand, the role in multiple sclerosis (MS), inflammatory demyelinating disease in the central nervous system (CNS), is largely unknown, although the presence of anti-glycolipid antibodies was reported to differ among MS patients with relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP) disease courses. We investigated whether the induction of anti-glycolipid antibodies could differ among experimental MS models with distinct clinical courses, depending on induction methods. Using three mouse strains, SJL/J, C57BL/6, and A.SW mice, we induced five distinct experimental autoimmune encephalomyelitis (EAE) models with myelin oligodendrocyte glycoprotein (MOG)35-55, MOG92-106, or myelin proteolipid protein (PLP)139-151, with or without an additional adjuvant curdlan injection. We also induced a viral model of MS, using Theiler's murine encephalomyelitis virus (TMEV). Each MS model had an RR, SP, PP, hyperacute, or chronic clinical course. Using the sera from the MS models, we quantified antibodies against 11 glycolipids: GM1, GM2, GM3, GM4, GD3, galactocerebroside, GD1a, GD1b, GT1b, GQ1b, and sulfatide. Among the MS models, we detected significant increases in four anti-glycolipid antibodies, GM1, GM3, GM4, and sulfatide, in PLP139-151-induced EAE with an RR disease course. We also tested cellular immune responses to the glycolipids and found CD1d-independent lymphoproliferative responses only to sulfatide with decreased interleukin (IL)-10 production. Although these results implied that anti-glycolipid antibodies might play a role in remissions or relapses in RR-EAE, their functional roles need to be determined by mechanistic experiments, such as injections of monoclonal anti-glycolipid antibodies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Theilovirus , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sulfoglicoesfingolipídeos , Recidiva Local de Neoplasia , Anticorpos , Glicoproteína Mielina-Oligodendrócito , Glicolipídeos
16.
Mol Ther ; 31(10): 2962-2974, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37644722

RESUMO

A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.


Assuntos
Leucodistrofia Metacromática , Doenças por Armazenamento dos Lisossomos , Camundongos , Animais , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/tratamento farmacológico , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Sulfoglicoesfingolipídeos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia
17.
Front Immunol ; 14: 1188786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426663

RESUMO

Background: Antibodies to lipids are part of the first line of defense against microorganisms and regulate the pro/anti-inflammatory balance. Viruses modulate cellular lipid metabolism to enhance their replication, and some of these metabolites are proinflammatory. We hypothesized that antibodies to lipids would play a main role of in the defense against SARS-CoV-2 and thus, they would also avoid the hyperinflammation, a main problem in severe condition patients. Methods: Serum samples from COVID-19 patients with mild and severe course, and control group were included. IgG and IgM to different glycerophospholipids and sphingolipids were analyzed using a high-sensitive ELISA developed in our laboratory. A lipidomic approach for studying lipid metabolism was performed using ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results: Mild and severe COVID-19 patients had higher levels of IgM to glycerophosphocholines than control group. Mild COVID-19 patients showed higher levels of IgM to glycerophosphoinositol, glycerophosphoserine and sulfatides than control group and mild cases. 82.5% of mild COVID-19 patients showed IgM to glycerophosphoinositol or glycerophosphocholines plus sulfatides or glycerophosphoserines. Only 35% of severe cases and 27.5% of control group were positive for IgM to these lipids. Lipidomic analysis identify a total of 196 lipids, including 172 glycerophospholipids and 24 sphingomyelins. Increased levels of lipid subclasses belonging to lysoglycerophospholipids, ether and/or vinyl-ether-linked glycerophospholipids, and sphingomyelins were observed in severe COVID-19 patients, when compared with those of mild cases and control group. Conclusion: Antibodies to lipids are essential for defense against SARS-CoV-2. Patients with low levels of anti-lipid antibodies have an elevated inflammatory response mediated by lysoglycerophospholipids. These findings provide novel prognostic biomarkers and therapeutic targets.


Assuntos
COVID-19 , Humanos , Metabolismo dos Lipídeos , Esfingomielinas , Sulfoglicoesfingolipídeos , SARS-CoV-2 , Glicerofosfolipídeos , Imunoglobulina M
18.
J Am Soc Mass Spectrom ; 34(8): 1593-1597, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37424084

RESUMO

MALDI-TOF MS is a powerful tool to analyze biomolecules, owing to its soft ionization nature that generally results in simple spectra of singly charged ions. Implementation of the technology in the imaging mode provides a means to spatially map analytes in situ. Recently, a new matrix, DBDA (N1,N4-dibenzylidenebenzene-1,4-diamine) was reported to facilitate the ionization of free fatty acids in negative ion mode. Building on this finding, we sought to implement DBDA for MALDI mass spectrometry imaging studies in brain tissue and successfully map oleic acid, palmitic acid, stearic acid, docosahexaenoic acid, and arachidonic acid using mouse brain sections. Moreover, we hypothesized that DBDA would provide superior ionization for sulfatides, a class of sulfolipids with multiple biological functions. Herein, we also demonstrate that DBDA is ideal for MALDI mass spectrometry imaging of fatty acids and sulfatides in brain tissue sections. Additionally, we show enhanced ionization of sulfatides using DBDA compared with three different traditionally used MALDI matrices. Together these results provide new opportunities for studies to measure sulfatides by MALDI-TOF MS.


Assuntos
Ácidos Graxos , Sulfoglicoesfingolipídeos , Camundongos , Animais , Ácidos Graxos/análise , Sulfoglicoesfingolipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Íons
19.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445661

RESUMO

The interconnection between obesity and central nervous system (CNS) neurological dysfunction has been widely appreciated. Accumulating evidence demonstrates that obesity is a risk factor for CNS neuroinflammation and cognitive impairment. However, the extent to which CNS disruption influences peripheral metabolism remains to be elucidated. We previously reported that myelin-enriched sulfatide loss leads to CNS neuroinflammation and cognitive decline. In this study, we further investigated the impact of CNS sulfatide deficiency on peripheral metabolism while considering sex- and age-specific effects. We found that female sulfatide-deficient mice gained significantly more body weight, exhibited higher basal glucose levels, and were glucose-intolerant during glucose-tolerance test (GTT) compared to age-matched controls under a normal diet, whereas male sulfatide-deficient mice only displayed glucose intolerance at a much older age compared to female sulfatide-deficient mice. Mechanistically, we found that increased body weight was associated with increased food intake and elevated neuroinflammation, especially in the hypothalamus, in a sex-specific manner. Our results suggest that CNS sulfatide deficiency leads to sex-specific alterations in energy homeostasis via dysregulated hypothalamic control of food intake.


Assuntos
Doenças Neuroinflamatórias , Sulfoglicoesfingolipídeos , Camundongos , Masculino , Feminino , Animais , Sulfoglicoesfingolipídeos/metabolismo , Camundongos Knockout , Sistema Nervoso Central/metabolismo , Envelhecimento , Obesidade , Peso Corporal
20.
Neurotherapeutics ; 20(5): 1347-1368, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525026

RESUMO

Metachromatic leukodystrophy (MLD) is a severe demyelinating, autosomal recessive genetic leukodystrophy. The disease is underpinned by mutations in the arylsulfatase A gene (ARSA), resulting in deficient activity of the arylsulfatase A lysosomal enzyme and consequential accumulation of galactosylceramide-3-O-sulfate (sulfatide) in the brain. Using an ex vivo murine-derived organotypic cerebellar slice culture model, we demonstrate that sulfatide induces demyelination in a concentration-dependent manner. Interestingly, our novel data demonstrate that sulfatide-induced demyelination is underpinned by PARP-1 activation, oligodendrocyte loss, pro-inflammatory cytokine expression, astrogliosis, and microgliosis. Moreover, such sulfatide-induced effects can be attenuated by the treatment with the poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor Olaparib (IC50∼100 nM) suggesting that this small molecule may be neuroprotective and limit toxin-induced demyelination. Our data support the idea that sulfatide is a key driver of demyelination and neuroinflammation in MLD and suggest that PARP-1 inhibitors have therapeutic utility in the sphere of rare demyelinating disease.


Assuntos
Doenças Desmielinizantes , Leucodistrofia Metacromática , Animais , Camundongos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Doenças Neuroinflamatórias , Inibidores de Poli(ADP-Ribose) Polimerases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...